Example:

Mortgage Payments	
Monthly Payment: $R = P * r / (1 - (1 + r)^{-n})$ where $i = r/12$ and $n = 12*t$	
Debt Balance after k payments: $D = P * (1 + r)k - R * ((1 + r)^k - 1)/r)$	
where $P = principal, r = interest rate per period, n = no. of periods, and$	
k = no. of payments	
200000	P = Principal (\$)
4.8	i = Annual Rate of Interest (%)
30	t = Years
60	k = No. of Payments
Calculate! Clear	
1049.33	R = Monthly Payment (\$)
183130.29	D = Debt after K payments (\$)
Accelerating Mortgage Payments Suppose one decides to pay more than the monthly payment shown above. How many months will it take until the mortgage is paid off?	
$m = \ln[x/(x - Pr)] / \ln(1 + r)$	
200000	P = Principal (\$)
4.8	i = Annual Rate of Interest (%)
1200	x = Monthly Payment (\$)
Calculate! Clear	
275.2	m = No. of Payments

A mortgage of \$200,000 is taken for 30 years at the annual rate of 4.8%. The monthly payment is \$1,049.33 and after 60 payments (5 years) the balance is down to \$181,130.29. If the monthly payments are \$1,200 a month from the beginning the loan can be paid off in 275.2 months or 7 years earlier.

$r = \frac{0.048}{12} = 0.004$
n = 30 * 12 = 360
$R = \frac{200000 * 0.004}{1 - 1.004^{-360}} = \frac{800}{0.762390725} = 1049.33$
$n = \frac{\ln[1200/(1200 - 200000 * .004)]}{\ln[1.004]} = \frac{\ln[3]}{\ln[1.004]} = 275.202$

$$P = \frac{R}{(1+i)} + \frac{R}{(1+i)^2} + \dots + \frac{R}{(1+i)^{n-1}} + \frac{R}{(1+i)^n}$$

Return to Financial Calculations