Example:

Mortgage Payments

Monthly Payment: $R=P^{*} r /\left(1-(1+r)^{-n}\right)$ where $i=r / 12$ and $n=12^{*} t$
Debt Balance after k payments: $D=P$ * $\left.(1+r) k-R *\left((1+r)^{k}-1\right) / r\right)$
where $P=$ principal, $r=$ interest rate per period, $n=n o$. of periods, and
$k=$ no. of payments

200000		$\mathbf{P}=$ Principal (\$)
4.8		$\mathbf{i}=$ Annual Rate of Interest (\%)
30		t = Years
60		$k=$ No. of Payments
Calculate!	Clear	
1049.33		R = Monthly Payment (\$)
183130.29		D = Debt after K payments (\$)

Accelerating Mortgage Payments

Suppose one decides to pay more than the monthly payment shown above. How many months will it take until the mortgage is paid off?

```
m= ln[x/(x-Pr)]/ln(1+r)
200000 P = Principal ($)
4.8 i = Annual Rate of Interest (%)
1200 x = Monthly Payment ($)
Calculate! Clear
275.2 m}=\mathrm{ No. of Payments
```

A mortgage of $\$ 200,000$ is taken for 30 years at the annual rate of 4.8%. The monthly payment is $\$ 1,049.33$ and after 60 payments (5 years) the balance is down to $\$ 181,130.29$. If the monthly payments are $\$ 1,200$ a month from the beginning the loan can be paid off in 275.2 months or 7 years earlier.

$$
\begin{aligned}
& \mathrm{r}=\frac{0.048}{12}=0.004 \\
& \mathrm{n}=30 * 12=360 \\
& \mathrm{R}=\frac{200000 * 0.004}{1-1.004^{-360}}=\frac{800}{0.762390725}=1049.33 \\
& \mathrm{n}=\frac{\ln [1200 /(1200-200000 * .004)]}{\ln [1.004]}=\frac{\ln [3]}{\ln [1.004]}=275.202 \ldots
\end{aligned}
$$

$$
P=\frac{R}{(1+i)}+\frac{R}{(1+i)^{2}}+\cdots+\frac{R}{(1+i)^{n-1}}+\frac{R}{(1+i)^{n}}
$$

