Example:

Future Value of an Annuity

Future Value: $\left.\mathrm{FV}=\mathrm{R}^{*}\left((1+\mathbf{i})^{\mathrm{n}}-\mathbf{1}\right) / \mathrm{i}\right)$
where P = annual payment, $r=$ rate of interest, $k=n o$. of periods per year.
$R=P / k, i=r / k$ and $n=n o$. of payments

3600	Annual Payment (\$)	
4.8	Annual Rate of Interest (\%)	
12	Number of Periods per Year	
25	Number of Years	
Calculate!	Clear	
173413.45		Future Value of Annuity (\$)

What is the total accumulation when one saves $\$ 300 /$ month ($\$ 3,600$ annually) for 25 years at the annual rate of interest of 4.8% compounded monthly? The accumulation is the future value of an annuity.

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{P}}{\mathrm{k}}=\frac{3600}{12}=300 \\
& \mathrm{i}=\frac{\mathrm{r}}{\mathrm{k}}=\frac{0.048}{12}=0.004 \\
& \mathrm{FV}=\frac{\mathrm{R}\left[(1+\mathrm{i})^{\mathrm{n}}-1\right]}{\mathrm{i}}=\frac{300\left[1.004^{300}-1\right]}{0 / 004}=173413.45
\end{aligned}
$$

Note: $\quad \mathrm{FV}=\mathrm{R}(1+\mathrm{i})^{\mathrm{n}-1}+\mathrm{R}(1+\mathrm{i})^{\mathrm{n}-2}+\cdots+\mathrm{R}(1+\mathrm{i})^{2}+\mathrm{R}(1+\mathrm{i})+\mathrm{R}$
Return to Financial Calculations

