
Padé - Rational Polynomial Approximations – Prof. Richard B. Goldstein 
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To find the p’s and q’s (assume q0 = 1) and rearrange: 0
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in which the numerator’s coefficients of 1, x, …, xm+n are set to 0.  This will result in a system of m linear 
equations in m unknowns involving the q’s alone and simple equations for the p’s. 
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is accurate to within ±0.0133 on [-π/4, π/4].  Using m = 3 and n = 2 
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   Equate the coefficients on both sides: 
 
    1: p0 = 0 
    x: p1 = 1 
    x2: p2 = q1 

    x3: p3 = 2q
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   Solve the last two equations first and substitute the q1 and q2 to find the p’s 
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   Note: Using the Taylor expansion of sin(x) and cos(x) one would expect 
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Error Curves 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the approximation is repeated with m = 5 and n = 4, noting the various coefficients that are zero: 
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Equate the coefficients on both sides: 
   
    x: p1 = 1 

    x3: p3 = 
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Solve the last two equations first and substitute the q2 and q4 to find the p’s 
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 Note:  The terms in the numerator and denominator are getting closer to the Taylor Series 
  terms for sin(x) and cos(x) 
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is accurate within ±0.02600 on [0, 1].  Using m = 3 and n = 2 
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   Equate the coefficients on both sides: 
 
    1: p0 = 0 
    x: p1 = 1 

    x2: p2 = 1q
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   Solve the last two equations first and substitute the q1 and q2 to find the p’s 
 

   
6

5
p,

10

33
p,1p,0p,

50

87
q,

5

18
q 321021 ======  

 

   2

32

x74.1x6.31

x...8333333.0x3.3x
)x(f

++
++≈  is accurate within ±0.00126 on [0, 1] 

    
   Note: Since the denominator in the Padé approximation has a root at -0.33, the 
    approximation is only good for x > 0. 
 
Error Curves 

 



Continued Fraction Expansions 
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The first expression 8 × , 5 ±, and 1 ÷  or 14 ops; the second requires 4 × , 5 ±, and 1 ÷  or 10 ops; and 
the third requires 5 ± and 3 ÷  or only 8 ops. 
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Algebraic long-division steps: 

     


