Fixed Points / Iterations - Prof. Richard B. Goldstein

Roots can be found using an iterative procedure where $x_{n+1} = g(x_n)$. That is, starting with an initial estimate x_0 , we find each successive new value x_1, x_2, x_3, \ldots by plugging into an equation g(x). This function $g(x)$ comes from replacing $f(x) = 0$ by an equation $x = g(x)$ with the same solution or root.

A value of $x = p$ where $p = g(p)$ is called a **fixed point.** Some fixed points are stable where the sequence of values converges to that fixed point. Others fixed points are unstable and the sequence is divergent.

Consider the following iterations: [1] $x_{n+1} = 0.4x_n + 6$ [2] $x_{n+1} = 3x_n - 20$

For both iterations 10 is a fixed point. That is if one iterate is 10 then all of the following iterates are also 10. Suppose we let $x_0 = 5$. What iterates follow?

In [1] if $x_0 = 5$, then $x_1 = 8$, $x_2 = 9.2$, $x_3 = 9.68$, $x_4 = 9.872$, ... a sequence converging to 10. In [2] if $x_0 = 5$, then $x_1 = -5$, $x_2 = -35$, $x_3 = -125$, $x_4 = -395$, ... a sequence diverging from 10.

What was the difference? Solving for p in [1] $p = 0.4p + 6$ gives $0.6p = 6$ followed by $p = 10$ as does solving for p in [2] $p = 3p - 20$ which gives $2p = 20$ followed by $p = 10$. Therefore, $p = 10$ is a fixed point for both. By testing various similar linear equations we find that we get convergence for the iteration $x_{n+1} = mx_n + b$ whenever $|m| < 1$ and divergence whenever $|m| > 1$.

Consider a simple quadratic $f(x) = x^2 - x - 6 = 0$. We can produce various g's for $x = g(x)$. Here are 4 possibilities:

Which of these converges? Note that the root $x = 3$ is a fixed point for all of these.

Fixed-Point Theorem

Let g be a continuous function on the closed interval [a, b] such that $g(x)$ is bounded by [a, b]. Suppose, in addition, that the derivative of g exists on the open interval (a, b) and the absolute value of $g'(x)$ is bounded by a value of $k < 1$, then for any p_0 in [a, b] the sequence $p_{n+1} = g(p_n)$ converges to the unique fixed point p in [a,b]. The range of g is within [a, b] and the range for its derivative is within ± 1 .

Iterative Solutions to $x^2 - x - 6 = 0$

Fixed Point Example – Prof. Richard B. Goldstein

 $p_{n+1} = g(p_n) = -0.1p_n^2 + 0.6p_n + 2$ on [1, 4]

- [1] Clearly the polynomial $g(x)$ is continuous on [1, 4]
- $[2]$ g(1) = -0.1 + 0.6 + 2 = 2.5 ε [1, 4] g(4) = -1.6 + 2.4 + 2 = 2.8 ε [1, 4]

Since $g'(x) = -0.2x + 0.6 = 0$ at $x = 3$ we consider this critical point:

$$
g(3) = -0.9 + 1.8 + 2 = 2.9 \epsilon [1, 4]
$$

 g(x) has an absolute maximum of 2.9 and absolute minimum of 2.5 on [1, 4]. Therefore, $1 \le g(x) \le 4 \forall x \in [1,4]$

[3]
$$
g'(x) = -0.2x + 0.6
$$
 exists on (1,4)

 $|q'| = |-0.2 + 0.6| = 0.4 < 1$ g'(x) is linear and monotonic. Let k = max{0.4,0.6} = 0.6 $|g'(4)| = |-0.8 + 0.2| = 0.6 < 1$

Starting with $p_0 = 2$ we find: $p_1 = 2.8$ $p_2 = 2.896$ $p_3 = 2.8989184$ $p_4 = 2.898978251$ $p_5 = 2.8989794606$ $p_6 = 2.8989794851$ $p_7 = 2.8989794856 (= p_8 = p_9 = \cdots)$

Note:

 \overline{a}

Solve: $x = -0.1x^2 + 0.6x + 2 \Rightarrow x^2 + 4x - 20 = 0$ which yields two roots :

 $x = \frac{124.56}{2} = -2 \pm 2\sqrt{6} = 2.898979486, -6.$ $-4±$ = −2±2√6 = 2.898979486, − $4 \pm \sqrt{96}$ 2 $2 \pm 2\sqrt{6}$ = 2.898979486, - 6.898979486 Try instead using the interval [-7, -6.8]

It is unstable since $|g'(-6.9)| = 1.98 > 1$