Fixed Points / Iterations - Prof. Richard B. Goldstein

Roots can be found using an iterative procedure where $x_{n+1} = g(x_n)$. That is, starting with an initial estimate x_0 , we find each successive new value $x_1, x_2, x_3, ...$ by plugging into an equation g(x). This function g(x) comes from replacing f(x) = 0 by an equation x = g(x) with the same solution or root.

A value of x = p where p = g(p) is called a **fixed point.** Some fixed points are stable where the sequence of values converges to that fixed point. Others fixed points are unstable and the sequence is divergent.

Consider the following iterations: [1] $x_{n+1} = 0.4x_n + 6$ [2] $x_{n+1} = 3x_n - 20$

For both iterations 10 is a fixed point. That is if one iterate is 10 then all of the following iterates are also 10. Suppose we let $x_0 = 5$. What iterates follow?

In [1] if $x_0 = 5$, then $x_1 = 8$, $x_2 = 9.2$, $x_3 = 9.68$, $x_4 = 9.872$, ... a sequence converging to 10. In [2] if $x_0 = 5$, then $x_1 = -5$, $x_2 = -35$, $x_3 = -125$, $x_4 = -395$, ... a sequence diverging from 10.

What was the difference? Solving for p in [1] p = 0.4p + 6 gives 0.6p = 6 followed by p = 10 as does solving for p in [2] p = 3p - 20 which gives 2p = 20 followed by p = 10. Therefore, p = 10 is a fixed point for both. By testing various similar linear equations we find that we get convergence for the iteration $x_{n+1} = mx_n + b$ whenever |m| < 1 and divergence whenever |m| > 1.

Consider a simple quadratic $f(x) = x^2 - x - 6 = 0$. We can produce various g's for x = g(x). Here are 4 possibilities:

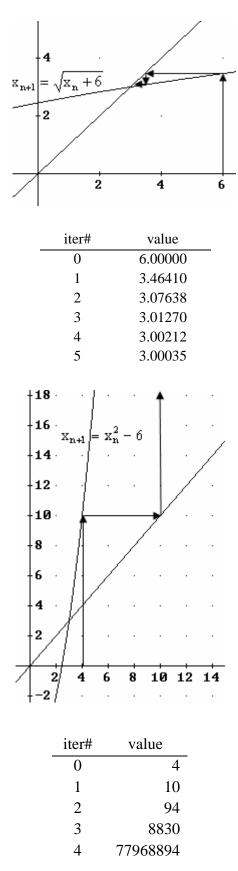
$g(x) = \sqrt{x+6}$	from $x^2 = x + 6$ and then take square roots
$g(x) = 1 + \frac{6}{x}$	from $x^2 = x + 6$ and then divide both sides by x
$g(x) = x^2 - 6$	from solving for the middle term
$g(x) = \frac{x^2 + 6}{2x - 1}$	from Newton's method

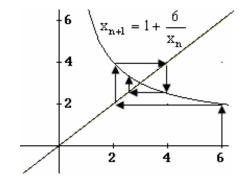
Which of these converges? Note that the root x = 3 is a fixed point for all of these.

Fixed-Point Theorem

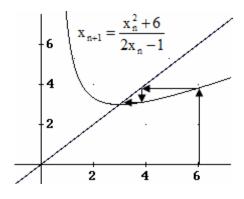
Let g be a continuous function on the closed interval [a, b] such that g(x) is bounded by [a, b]. Suppose, in addition, that the derivative of g exists on the open interval (a, b) and the absolute value of g'(x) is bounded by a value of k < 1, then for any p_0 in [a, b] the sequence $p_{n+1} = g(p_n)$ converges to the unique fixed point p in [a,b]. The range of g is within [a, b] and the range for its derivative is within ± 1 .

Iterative Solutions to $x^2 - x - 6 = 0$





iter#	value
0	6.00000
1	2.00000
2	4.00000
3	2.50000
4	3.40000
5	2.76471
6	3.17021
7	2.89262
8	3.07425



iter#	value
0	6.000000
1	3.818182
2	3.100872
3	3.001956
4	3.000001

Fixed Point Example - Prof. Richard B. Goldstein

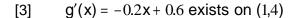
 $p_{n+1} = g(p_n) = -0.1p_n^2 + 0.6p_n + 2 \text{ on } [1, 4]$

- [1] Clearly the polynomial g(x) is continuous on [1, 4]
- [2] $g(1) = -0.1 + 0.6 + 2 = 2.5 \epsilon [1, 4]$ $g(4) = -1.6 + 2.4 + 2 = 2.8 \epsilon [1, 4]$

Since g'(x) = -0.2x + 0.6 = 0 at x = 3 we consider this critical point:

$$g(3) = -0.9 + 1.8 + 2 = 2.9 \epsilon [1, 4]$$

g(x) has an absolute maximum of 2.9 and absolute minimum of 2.5 on [1, 4]. Therefore, $1 \le g(x) \le 4 \ \forall x \epsilon [1,4]$



[4] |g'(1)| = |-0.2 + 0.6| = 0.4 < 1 g'(x) is linear and monotonic. Let $k = max\{0.4, 0.6\} = 0.6$ |g'(4)| = |-0.8 + 0.2| = 0.6 < 1

Starting with $p_0 = 2$ we find: $p_1 = 2.8$ $p_2 = 2.896$ $p_3 = 2.8989184$ $p_4 = 2.898978251$ $p_5 = 2.8989794606$ $p_6 = 2.8989794851$ $p_7 = 2.8989794856$ (= $p_8 = p_9 = \cdots$)

Note:

Solve: $x = -0.1x^2 + 0.6x + 2 \Rightarrow x^2 + 4x - 20 = 0$ which yields two roots:

 $x = \frac{-4 \pm \sqrt{96}}{2} = -2 \pm 2\sqrt{6} = 2.898979486, -6.898979486$ Try instead using the interval [-7, -6.8]

It is unstable since $|\mathbf{g}'(-6.9)| = 1.98 > 1$

