
Fixed Points / Iterations - Prof. Richard B. Goldstein 

Roots can be found using an iterative procedure where xn+1 = g(xn). That is, starting with an initial 
estimate x0, we find each successive new value x1, x2, x3, … by plugging into an equation g(x). This 
function g(x) comes from replacing f(x) = 0 by an equation x = g(x) with the same solution or root. 

A value of x = p where p = g(p) is called a fixed point.  Some fixed points are stable where the sequence 
of values converges to that fixed point.  Others fixed points are unstable and the sequence is divergent. 

Consider the following iterations: [1] xn+1 = 0.4xn + 6  [2] xn+1 = 3xn – 20 

For both iterations 10 is a fixed point.  That is if one iterate is 10 then all of the following iterates are 
also 10.  Suppose we let x0 = 5.  What iterates follow? 

In [1] if x0 = 5, then x1 = 8, x2 = 9.2, x3 = 9.68, x4 = 9.872, … a sequence converging to 10. 
In [2] if x0 = 5, then x1 = -5, x2 = -35, x3 = -125, x4 = -395, … a sequence diverging from 10. 

What was the difference? Solving for p in [1] p = 0.4p + 6 gives 0.6p = 6 followed by p = 10 as does 
solving for p in [2] p = 3p – 20 which gives 2p = 20 followed by p = 10.  Therefore, p = 10 is a fixed 
point for both.  By testing various similar linear equations we find that we get convergence for the 
iteration xn+1 = mxn + b whenever |m| < 1 and divergence whenever |m| > 1. 

Consider a simple quadratic f(x) = x2 – x – 6 = 0.  We can produce various g’s for x = g(x). Here are 4 
possibilities: 
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Which of these converges?  Note that the root x = 3 is a fixed point for all of these. 

Fixed-Point Theorem 

Let g be a continuous function on the closed interval [a, b] such that g(x) is bounded by [a, b]. Suppose, 
in addition, that the derivative of g exists on the open interval (a, b) and the absolute value of g′(x) is 
bounded by a value of k < 1, then for any p0 in [a, b] the sequence pn+1 = g(pn) converges to the unique 
fixed point p in [a,b]. The range of g is within [a, b] and the range for its derivative is within ±1. 

  



Iterative Solutions to x2 – x – 6 = 0 

    

     

 

 

 

 

 
 
  

iter# value 
0 6.00000 
1 3.46410 
2 3.07638 
3 3.01270 
4 3.00212 
5 3.00035 

iter# value 
0 4 
1 10 
2 94 
3 8830 
4 77968894 

iter# value 
0 6.000000 
1 3.818182 
2 3.100872 
3 3.001956 
4 3.000001 

iter# value 
0 6.00000 
1 2.00000 
2 4.00000 
3 2.50000 
4 3.40000 
5 2.76471 
6 3.17021 
7 2.89262 
8 3.07425 



Fixed Point Example – Prof. Richard B. Goldstein 
 

p g p p pn n n n+ = = − + +1
201 0 6 2( ) . .  on [1, 4] 

 
[1] Clearly the polynomial g(x) is continuous on [1, 4] 
 
[2] g(1) = -0.1 + 0.6 + 2 = 2.5 ε [1, 4] 
 g(4) = -1.6 + 2.4 + 2 = 2.8 ε [1, 4] 
 
 Since ′ = − + = =g x x at x( ) . .0 2 0 6 0 3 we consider 
 this critical point: 
  
  g(3) = -0.9 +1.8 + 2 = 2.9 ε [1, 4] 
 
 g(x) has an absolute maximum of 2.9 and absolute 
 minimum of 2.5 on [1, 4].  Therefore, 
 1 4 14≤ ≤ ∀g x x( ) [ , ]ε  
 
[3] ′ = − +g x x exists on( ) . . ( , )0 2 0 6 14  
 

[4] ′ = − + = <g ( ) . . .1 0 2 0 6 0 4 1 ′g x is linear and monotonic( ) .   Let k = max{0.4,0.6} = 0.6 

 ′ = − + = <g ( ) . . .4 08 0 2 0 6 1 
 
 Starting with  p0 2=  we find: 
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Note: 

 

Solve x x x x x

which yields two roots
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 Try instead using the interval  [-7, -6.8] 
 

  It is unstable since ′ − = >g ( . ) .6 9 198 1 


