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Karl Weierstrass was the first to prove that there is always a polynomial that can be used 
to approximate any function f(x) on a closed interval within a band of ±ε. In addition, since 
polynomials are very easy to evaluate on a computer, they become the prime form to use for 
representing a function. We will consider various methods and will also consider the use of a 
rational polynomial. 
 
 In the general problem one is given n + 1 points (x0, f0), (x1, f1), …, (xn, fn).  Just as two 
points determine a unique line, n + 1 points determine a unique nth degree polynomial. Several 
mathematicians found different ways to find that nth degree polynomial. We will consider the 
methods of Lagrange, Neville, and Newton. 
 
• Lagrange considered nth degree polynomials Ln,k(x) which take on the value 1 at x = xk and 

the value 0 at any of the other values of x, namely x0, x1, …, xk-1, xk+1, …, xn 

We then set Pn(x), our polynomial fit, to be a linear combination of these nth degree 
polynomials Ln,k(x) with weights of f0, f1, …, fn.  The resulting Pn(x) will then correctly taken 
on the value fk at x = xk for k ranging from 0 to n. 

 

• Neville found a way to start with a table of the n + 1 points and their function values and 
come up with the same value as Lagrange, Pn(x), at any arbitrary point x. His method never 
actually finds the polynomial, just its value at x.  This is done by first considering all linear 
equations through pairs of consecutive points, then all quadratic equations through all sets of 
three consecutive points, then all cubic equations through all sets of four consecutive points, 
until finally considering the unique polynomial value through all n + 1 points. This is very 
convenient for programmers since it is done with a double array and need not use the 
variable, x. 

 
• Newton’s divided difference method finds a simple tabular way of finding Pn(x) in the form 

A + B(x – x0) + C(x – x0)(x – x1) + D(x – x0)(x – x1)(x – x2) + …  The values of the 
coefficients A, B, C, D, … etc. are found from this table. Newton’s method greatly simplifies 
to a simple difference table when the n + 1 points are equally spaced. 

 

• Two other special cases are considered. Hermite found a unique polynomial that would be 
given through the n + 1 points along with knowledge of the first derivatives, f ΄(xk), at each 
point. Although not in our text, many other texts give an algorithm for finding a unique 
rational polynomial P(x)/Q(x) through the n + 1 points.
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Weierstrass Approximation Theorem 
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Given Information : n + 1 points: x0, f0; x1, f1; …; xn, fn where   fk = f(xk) 
 
Lagrange Polynomials 
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Neville’s Formula 
 
 x0 f(x0) = P0 = Q0,0 

 x1 f(x1) = P1 = Q1,0 P0,1 = Q1,1 

 x2 f(x2) = P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2 

 x3 f(x3) = P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3 
 x4 f(x4) = P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4 
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Newton’s Divided-Difference Formula 
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 x0 f[x0] 
   f[x0, x1] 
 x1 f[x1]   f[x0, x1, x2] 
   f[x1, x2]   f[x0, x1, x2, x3] 
 x2 f[x2]   f[x1, x2, x3] 
   f[x2, x3] 
 x3 f[x3] 
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Newton Forward Difference Formula (equally spaced points only) 
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Newton Backward Difference Formula (equally spaced points only) 
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Hermite Interpolation  
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z2 = x1 f[z2]=f(x1)  
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z4 = x2 f[z4]=f(x2)  
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INTERPOLATION EXAMPLES – Prof. Richard B. Goldstein 
 
Given points:  (1, 6), (2, 4), (3, 3) and (5, 2)  Estimate f(4) 
 
Lagrange Polynomials 
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Neville’s Method 
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 x0 = 1 Q0, 0 = 6 

 x1 = 2 Q1, 0 = 4 Q1, 1 = 0 

 x2 = 3 Q2, 0 = 3 Q2, 1 = 2 Q2, 2 = 3 

 x3 = 5 Q3, 0 = 2 Q2, 1 = 2.5 Q3, 2 = 2.333333 Q3, 3 = 2.5 

 
Divided Differences 
 
 xi F[xi] F[xi, xi+1] F[xi, xi+1, xi+2]  F[xi, xi+1, xi+2, xi+3] 
 1 6   
   -2 
 2 4   0.5 
   -1     -0.083333333 
 3 3   0.16666666  
   -0.5 
 5 2 
 
 P3(4) = 6 – 2(4 – 1) + 0.5(4 – 1)(4 – 2) – 0.08333333(4 – 1)(4 – 2)(4 – 3) = 2.5 
 
 Error Term 
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Differences 
 
 1 6 
   -2 
 2 4  1 
   -1  -0.6 
 3 3  0.4  0.4 
   -0.6  -0.2 
 4 2.4  0.2 
   -0.4 
 5 2 
 
Forward  x = 3.8 = x0 + sh = 1 + s(1) → s = 2.8 
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Backward  x = 3.8 = xn + sh = 5 + s(1) → s = -1.2 
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Hermite 
 

 Given Information : 2 pts: 
1x
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   1st DD 
 x f(x) or Derivative 2nd DD  3rd DD 
 
 3 3 
   -0.75 
 3 3   0.125 
   -0.5    -0.0208333… 
 5 2   0.08333… 
   -0.333… 
 5 2 
 
 P3(x) = 3 – 0.75(x – 3) + 0.125(x – 3)2 - 0.0208333…(x -3)2(x – 5) 
 
 P3(4) = 3 – 0.75 + 0.125 + 0.0208333… = 2.3958333… (actual is 2.4) 
 
 


