Functions of a Random Variable & Moment Generating Functions – Prof. Richard B. Goldstein

Discrete

Y = u(X) is a one-to-one (1-1) transform

Let y = u(x) and the inverse x = w(y). Then g(y) = f[w(y)] is the probability distribution of Y

 $Y_1 = u_1(X_1, X_2)$ and $Y_2 = u_2(X_1, X_2)$ are 1-1 transforms

Let $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$ have inverse functions $x_1 = w_1(y_1, y_2)$ and $x_2 = w_2(y_1, y_2)$

Then $g(y_1, y_2) = f[w_1(y_1, y_2), w_2(y_1, y_2)]$

Continuous

As above, but now g(y) = f[w(y)] |J| where J = w'(y) is the Jacobian of the transform

Also as above, but now $g(y_1, y_2) = f[w_1(y_1, y_2), w_2(y_1, y_2)] |J|$ where J is given by the 2 by 2 determinant: $J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$

Note: These concepts basically follow the rules for integral substitution or transforms in two variables

Moments

rth moment about the origin
$$\mu_r' = E(X^r) = \begin{cases} \sum_{x} x^r f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} x^r f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

moments can also be taken about the mean – for example the variance is the 2^{nd} moment about the mean moment generating functions and their properties

$$M_{X}(t) = E(e^{tx}) = \begin{cases} \sum_{x} e^{tx} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx \text{ if } X \text{ is continuous} \end{cases} \qquad \qquad \frac{d^{r} M_{X}(t)}{dt^{r}} = \mu_{1}$$

If two r.v.'s have the same moment generating functions, then they have the same probability dist.

$$M_{X+a}(t) = e^{at}M_X(t)$$

If $S_n = \sum_{i=1}^n a_i X_i$ then $M_{S_n}(t) = M_{X_1}(a_1t)M_{X_2}(a_2t)\cdots M_{X_n}(a_nt)$

Discrete Distribution	Probability Function	Moment Generating Function
Binomial	$f(x) = {n \choose x} p^{x} (1-p)^{n-x}, x = 0, 1,, n$	$\left[pe^{t}+(1-p)\right]^{n}$
Geometric	$f(x) = p(1-p)^{x-1}, x = 1, 2,$	$\frac{\mathrm{pe}^{\mathrm{t}}}{1-(1-\mathrm{p})\mathrm{e}^{\mathrm{t}}}$
Poisson	$f(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, x = 0, 1, \dots$	$\exp[\lambda(e^t - 1)]$

Continuous Distribution	Probability Function	Moment Generating Function
Uniform	$f(x) = \frac{1}{b-a}, a \le x \le b$	$\frac{e^{bt}-e^{at}}{t(b-a)}$
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], -\infty < x < \infty$	$\exp\left(\mu t + \frac{t^2 \sigma^2}{2}\right)$
Exponential	$f(x) = \frac{1}{\beta} e^{-x/\beta}, \beta > 0, 0 \le x < \infty$	$(1-\beta t)^{-1}$
Gamma	$f(x) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}, \ 0 < x < \infty$	$(1-\beta t)^{-\alpha}$
Chi-Square	$f(x) = \frac{x^{(\nu/2)-1}e^{-x/2}}{\Gamma(\nu/2)2^{\nu/2}}, \ 0 < x < \infty$	$(1-2t)^{-\nu/2}$

The moment generating functions for hypergeometric, beta, and lognormal distributions either do not exist or are too complicated to express in closed form.