Probability \& Statistics Notes - Prof. Richard B. Goldstein

SOURCES OF DATA

Data may be collected in the laboratory, from economic measures, the Internet, or from files on a disk. The values may be given as individual values or already grouped into intervals.

GROUPING DATA INTO INTERVALS

Simple rule:
use 5 to 15 intervals depending upon the number of values and their numerical values

Strickberger: under 30 values - use 6 to 10
50 to 100 values - use 12
200 to 500 values - use 14
Martin: minimize the ratio: \# sign reversals/ \# of intervals
Although the interval sizes do not have to be equal, they are usually at worst simple multiples - for example, one or more intervals may be twice as wide as the others (if so, their bar heights should be halved).

HISTOGRAMS, FREQUENCY POLYGONS \& OGIVES

data: $L=x_{1} \leq x_{2} \leq x_{3} \leq \cdots \leq x_{n-1} \leq x_{n}=H$
class width $=\frac{\mathrm{H}-\mathrm{L}}{\text { \#of intervals }}$
and is usually rounded up to the next integer
The frequency polygon connects the midpoints of each bar including one at zero on the left and right.

The bars must touch.
Each value fits into only one interval: lower class limit < value \leq upper class limit
The cumulative frequency curve or ogive (pronounced "ohjive") uses the same values on the x -axis as the histogram.

The shape is a non-decreasing curve or line segments from left to right and may use either the cumulative frequency on the y axis scale from 0 to n or the cumulative percentage from 0% to 100%.

Cholesterol Data from the Framingham Heart Study

Examples: stem \& leaf plot, histogram, Normal Q-Q plot, Box \& Whisker Diagram with outliers (SPSS)

Stem-and-leaf plot			Freq
16	7	1	Cumul Freq
17		0	1
18	4	1	1
19	28	2	4
20	02	2	6
21	0125678	7	13
22	0556	4	17
23	0000122244668	13	30
24	03678	5	35
25	444668	6	41
26	347778	6	47
27	00288	5	52
28	35	2	54
29		0	54
30	008	3	57
31		0	57
32	7	1	58
33	46	2	60
34		0	60
35	3	1	61
36		0	61
37		0	61
38		1	61
39	3		62

Percentiles								
		Percentiles						
		5	10	25	50	75	90	95
Weighted Average(Definition 1)	Cholesterol	192.90	204.40	225.00	241.50	268.50	305.60	335.70
Tukey's Hinges	Cholesterol			225.00	241.50	268.00		

rests of Normality

	Kolmogorov-Smirnov ${ }^{\mathbf{a}}$			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Cholesterol	.105	62	.085	.939	62	.004

a. Lilliefors Significance Correction

Moments and Percentiles - Prof. Richard B. Goldstein

Discrete Sample Data: $\quad \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \quad$ Ordered: $\quad \mathrm{L}=\mathrm{x}_{(1)} \leq \mathrm{x}_{(2)} \leq \cdots \leq \mathrm{x}_{(\mathrm{n})}=\mathrm{H}$

MEASURES OF CENTRAL TENDENCY

$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$ is the sample arithmetic mean
$\tilde{x}=p_{50}=\left\{\begin{array}{ll}\frac{x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}}{2} & \text { if } n \text { is even } \\ x_{\left(\frac{n+1}{2}\right)} & \text { if } n \text { is odd }\end{array}\right.$ is the sample $\underline{\text { median }}\left\{L=x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}=H\right\}$
Trimmed mean cuts out a percentage of the data from each end

Weighted mean is $\frac{\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\cdots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}}{\mathrm{w}_{1}+\mathrm{w}_{2}+\cdots+\mathrm{w}_{\mathrm{n}}}$
Geometric mean is $\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n}$ if all $x_{i}>0$
** Harmonic mean is $\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}}$
** μ_{r} is given by $\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{\mathrm{r}}}{n}$
is the $r^{\text {th }}$ central moment about the mean

MEASURES OF SPREAD

Variance and Standard Deviation

$s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}{n-1}$
note: s^{2} is an unbiased estimate
$\mathrm{s}=\sqrt{\mathrm{s}^{2}}$ is a biased estimate of the standard deviation
$\mathbf{R}=\mathbf{H}-\mathbf{L}$ is the range
** M.A.D. $=\frac{\sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|}{n}$ is the mean absolute deviation
$\mathbf{I Q R}=$ Interquartile Range $=\mathrm{Q}_{3}-\mathrm{Q}_{1}$
Chebychev's Theorem: For any $\mathrm{k} \geq 1$ the proportion of the data that must lie within $\pm \mathrm{k}$ standard deviations is at least $1-\frac{1}{\mathrm{k}^{2}}$ (ex. at least 75% of data within ± 2 st. devs.)
** not in most texts

SKEWNESS (third moment) is a measure of the asymmetry of a distribution

Other measures include Pearson's skewness coefficient defined as $\frac{3 \text { (mean }- \text { median) }}{\text { standard deviation }}$
$\hat{\alpha}_{3}=\frac{n}{(n-1)(n-2) s^{3}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}$ where $\mathrm{s}^{2}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-1}$ (used by Excel)
** $\gamma_{1}=\frac{\mu_{3}}{\mu_{2}^{3 / 2}}$
** Another Pearson measure of skewness involving the mode: $\frac{(\text { mean }- \text { mode })}{\text { standard deviation }}$
** Bowley's skewness defined as $\frac{\left(\mathrm{Q}_{3}-\mathrm{Q}_{2}\right)-\left(\mathrm{Q}_{2}-\mathrm{Q}_{1}\right)}{\mathrm{Q}_{3}-\mathrm{Q}_{1}}=\frac{\mathrm{Q}_{1}-2 \mathrm{Q}_{2}+\mathrm{Q}_{3}}{\mathrm{Q}_{3}-\mathrm{Q}_{1}}$ using quartiles

KURTOSIS (fourth moment) is a measure of the peakedness of a distribution

$\hat{\alpha}_{4}=\frac{n(n+1)}{(n-1)(n-2)(n-3) s^{4}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}-\frac{3(n-1)^{2}}{(n-2)(n-3)}$ (used by Excel)
** $\beta_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}$ and $\quad \gamma_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}-3$ is more common because it measures the excess from the normal distribution where $\beta_{2}=3$

PERCENTILES $\mathrm{p}_{\mathrm{k}}=\mathrm{k}^{\text {th }}$ percentile

Note that the $80^{\text {th }}$ percentile can be defined as either the lowest score that is "greater than" 80% of the scores or it can be defined as the lowest score "greater than or equal to" 80% of the scores. This can make a difference in small data sets.

Note that the $\mathrm{k}^{\text {th }}$ decile $\mathrm{d}_{\mathrm{k}}=\mathrm{p}_{10 \mathrm{k}}$ and $\mathrm{k}^{\text {th }}$ quartile $\mathrm{Q}_{\mathrm{k}}=\mathrm{p}_{25 \mathrm{k}}$. Also note that median $=\tilde{\mathrm{x}}=\mathrm{p}_{50}=\mathrm{d}_{5}=\mathrm{Q}_{2}$

Consider the sorted sample: $\mathrm{x}_{(1)} \leq \mathrm{x}_{(2)} \leq \ldots \leq \mathrm{x}_{(\mathrm{n}}$

Method I (used by Excel and Quattro Pro for example)
note: The median will be the same for both methods
$\mathrm{p}_{\mathrm{k}}=$ given by $\mathrm{x}_{(\mathrm{r})}$ where $\mathrm{r}=1+\frac{\mathrm{k}}{100}(\mathrm{n}-1)$
for example if $\mathrm{n}=7$ and $\mathrm{k}=20$, then $\mathrm{p}_{20}=\mathrm{x}_{(1+0.2(7-1))}=\mathrm{x}_{(2.2)}=\mathrm{x}_{(2)}+0.2\left(\mathrm{x}_{(3)}-\mathrm{x}_{(2)}\right)$
$\mathrm{x}_{(\mathrm{k})}$ is in the $100\left(\frac{\mathrm{k}-1}{\mathrm{n}-1}\right)$ percentile
for example if $\mathrm{n}=9$ then $\mathrm{x}_{(7)}$ is the $100(6 / 8)=75^{\text {th }}$ percentile

Method II (used by SPSS and known as Tukey's Hinges)
$\mathrm{p}_{\mathrm{k}}=$ given by $\mathrm{x}_{(\mathrm{r})}$ where $\mathrm{r}=\mathrm{k}(\mathrm{n}+1)$ with the following rules:
(a) if $\mathrm{k}(\mathrm{n}+1)<1$ then use $\mathrm{r}=1$
(b) if $\mathrm{k}(\mathrm{n}+1)>\mathrm{n}$ then use $\mathrm{r}=\mathrm{n}$
(c) if $\mathrm{k}(\mathrm{n}+1)$ then interpolate as in Method I
$\mathrm{x}_{(\mathrm{k})}$ is in the $100\left(\frac{\mathrm{k}}{\mathrm{n}+1}\right)$ percentile

Example: $\quad 4,5,8,11,15,18,19,30$
Method I - the $30^{\text {th }}$ percentile $\mathrm{p}_{30}=\mathrm{x}_{(1+0.3(8-1))}=\mathrm{x}_{(3.1)}=\mathrm{x}_{(3)}+0.1\left(\mathrm{x}_{(4)}-\mathrm{x}_{(3)}\right)=8+0.1(11-8)=8.3$
Method II - $\mathrm{p}_{30}=\mathrm{x}_{(0.3(8+1))}=\mathrm{x}_{(2.7)}=\mathrm{x}_{(2)}+0.7\left(\mathrm{x}_{(3)}-\mathrm{x}_{(2)}\right)=5+0.7(8-5)=7.1$
Method $I-8$ is in the $100(3-1) /(8-1)=200 / 7=28.6^{\text {th }}$ percentile
Method II -8 is in the $100(3) / 9=300 / 9=33.3^{\text {rd }}$ percentile

SAMPLE CALCULATIONS

Sample Data: $\quad 3,7,10,15,18,22,37$

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{3+7+10+15+18+22+37}{7}=\frac{112}{7}=16 \\
\mathrm{~s}^{2} & =\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-1}=\frac{(3-16)^{2}+\cdots+(37-16)^{2}}{7-1}=\frac{768}{6}=128 \text { or } \mathrm{s}^{2}=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}-\mathrm{n} \overline{\mathrm{x}}^{2}}{\mathrm{n}-1}=\frac{2560-7(16)^{2}}{7-1}=\frac{768}{6}=128 \\
\hat{\alpha}_{3} & =\frac{\mathrm{n}}{(\mathrm{n}-1)(\mathrm{n}-2) \mathrm{s}^{3}} \sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{3}=\frac{7}{6(5) 128 \sqrt{128}}\left[(3-16)^{3}+\cdots(37-16)^{3}\right]=\frac{7(6342)}{3840 \sqrt{128}}=1.02185 \ldots \\
\hat{\alpha}_{4} & =\frac{\mathrm{n}(\mathrm{n}+1)}{(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3) \mathrm{s}^{4}} \sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{4}-\frac{3(\mathrm{n}-1)^{2}}{(\mathrm{n}-2)(\mathrm{n}-3)}=\frac{7(8)}{6(5)(4) 128^{2}}\left[(3-16)^{4}+\cdots(37-16)^{4}\right]-\frac{3(6)^{2}}{5(4)} \\
& =\frac{56}{1,966,080}(232,212)-\frac{108}{20}=6.614111 \ldots-5.4=1.214111 . .
\end{aligned}
$$

$\mathrm{p}_{30}=\mathrm{x}_{(1+0.3(7-1))}=\mathrm{x}_{(2.8)}=\mathrm{x}_{(2)}+0.8\left(\mathrm{x}_{(3)}-\mathrm{x}_{(2)}\right)=7+0.8(10-7)=7+2.4=9.4$
Value percentile

3	7	10	15	18	22	37
0	16.67	33.33	50.00	66.67	83.33	100

GROUPED DATA

Grouped Sample Data: $\quad x_{1}$ with frequency f_{1}, x_{2} with frequency f_{2}, \ldots, x_{k} with frequency f_{k} $\bar{x}=\frac{\sum_{i=1}^{k} x_{i} f_{i}}{n}$ where $n=\sum_{i=1}^{k} f_{i} \quad$ is the sample arithmetic mean
the median is found from the ogive
** the mode is either the largest class or more accurately $M+\left(\frac{d_{1}}{d_{1}+d_{2}}\right) w$
 where M is the left lower limit of the modal class and w is the common width
$s^{2}=\frac{\sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)^{2} f_{i}}{n-1}=\frac{\sum_{i=1}^{k} x_{i}^{2} f_{i}-n \bar{x}^{2}}{n-1}$
Percentiles are found by using the ogive (cumulative frequency curve) and interpolating.

Consider the grouped sample data case

Example: class intervals 4 to 6,6 to 8,8 to 10 , and 10 to 12

x_{i}	5	7	9	11
f_{i}	4	7	6	3

Mean $=\frac{(5)(4)+(7)(7)+(9)(6)+(11)(3)}{4+7+6+3}=\frac{156}{20}=7.8$
Mode $=6+\left(\frac{3}{3+1}\right) 2=7.5 \quad$ Median $=6+\left(\frac{6}{7}\right) 2=7.714$
Variance $=\frac{5^{2} 4+7^{2} 7+9^{2} 6+11^{2} 3-20(7.8)^{2}}{20-1}=\frac{75.2}{19}=3.958 \mathrm{St} \mathrm{Dev}=1.989$
Pearson's Skewness $=\frac{3(7.8-7.714)}{1.989}=0.1297$ (slightly positive)
p_{40} is at $0.4(20)=8$ on the y-axis and $6+(4 / 7) 2=7.143$ on the x -axis
Medians and other percentiles are calculated using interpolation on the ogive

For this data set:

- Smallest non-outlier observation $=154$
- Lower quartile $\mathrm{Q}_{1}=345$
- Median $\mathrm{Q}_{2}=420$
- Upper quartile $\mathrm{Q}_{3}=484$
- Interquartile range $\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}=484-345=139$

1		154
2		162
3		177
4		180
5		230
6		273
7		324
8	Q1 =	345
9		356
10		378
11		405
12		410
13		412
14		416
15	$\mathrm{Q} 2=$	420
16		430
17		442
18		450
19		465
20		471
21		479
22	Q3 =	484
23		590
24		621
25		711
26		821
27		848
28		900
29		920

- Largest non-outlier observation $=621$
- Mild outliers (o) are between $1.5^{*} \mathrm{IQR}$ and $3 * \mathrm{IQR}$ above $\mathrm{Q}_{3}:(692.5,901]$ and below $\mathrm{Q}_{1}:[-72,136.5)$
- Extreme outliers $\left(^{*}\right)$ are above $\mathrm{Q}_{3}+3 * \mathrm{IQR}=901$ or below $\mathrm{Q}_{1}-3 * \mathrm{IQR}=-72$
- The data is skewed to the right (positively skewed)

Rule for Whiskers:

The lower whisker starts at Q_{1} and extends downward to $\mathrm{Q}_{1}-1.5(\mathrm{IQR})$ or the minimum value, whichever is greater.
The upper whisker starts at Q_{3} and extends upward to $\mathrm{Q}_{3}+1.5(\mathrm{IQR})$ or the maximum value, whichever is lower.

References:

Exploratory Data Analysis, John W. Tukey, Addison-Wesley, Reading, MA 1977
Kendall \& Stuart, The Advanced Theory of Statistics
Abramowitz \& Stegun, Handbook of Mathematical Functions
http://mathworld.wolfram.com/Skewness.html and http://mathworld.wolfram.com/Kurtosis.html http://www.answers.com/topic/skewness and http://www.answers.com/topic/kurtosis http://en.wikipedia.org/wiki/Box_plot

