Random Variables and Probability Distributions - Prof. Richard B. Goldstein

Random Variable - a variable which takes on values that are based upon the outcome of a random experiment
Discrete Distributions (takes on only a countable number of different values)
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{P}\left\{\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right\}=\mathrm{p}_{\mathrm{i}}$ where $0 \leq \mathrm{p}_{\mathrm{i}} \leq 1$ and $\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{p}_{\mathrm{i}}=1(\mathrm{k}$ may be $\infty)$
Expected value $\mu=\mathrm{E}[\mathrm{X}]=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}$
Variance $=\sigma^{2}=\operatorname{Var}[X]=\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2} p_{i}=\sum_{i=1}^{k} x_{i}^{2} p_{i}-\mu^{2}$

Continuous Distributions (takes on an infinite number of values over one or more intervals)
$f(x) \geq 0$ with an area under the curve is 1
Calculus Version (optional)

$$
\begin{aligned}
& \int_{D} f(x) d x=1 \text { where } D \text { is the domain } \\
& \mu=\int_{D} x f(x) d x \\
& \sigma^{2}=\int_{D}(x-\mu)^{2} f(x) d x=\int_{D} x^{2} f(x) d x-\mu^{2}
\end{aligned}
$$

Approximations

Binomial \rightarrow Normal

As $\mathrm{n} \rightarrow \infty$ one can approximate the binomial distribution by the normal distribution where $\mu=\mathrm{np}, \sigma^{2}=\mathrm{npq}$ and corrections of ± 0.5 are made when going from a discrete to a continuous distribution. The rule of thumb is both $n p>5$ and $n q>5$. The approximation is best when $\mathrm{np} \approx 0.5$.

Binomial \rightarrow Poisson

If p is small and n is large the Poisson distribution can be used to approximate the binomial distribution. The smaller the p and larger the n , the better will be the approximation. The rule of thumb is $\mathrm{n} \geq 100$ and $\mathrm{p}<0.1$.

Prof. Richard B. Goldstein - some discrete distributions using Excel

$\underline{\text { Binomial }} \quad \operatorname{BINOMDIST}(x, n, p, c)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \quad$ if $c=0$
$\mathrm{x} \quad=$ number of successes
$\mathrm{n} \quad=$ number of trials
p = probability of success on each trial
$\mathrm{c} \quad=\left\{\begin{array}{l}0 \text { for probability of } \mathrm{x} \text { successes } \\ 1 \text { for cumulative probability }\end{array}\right.$
Examples

BINOMDIST $(3,10,0.4,0)=0.214991$	$\mathrm{P}\{3$ successes out of 10 trials with $\mathrm{p}=0.4\}$
BINOMDIST $(3,10,0.4,1)=0.382281$	$\mathrm{P}\{3$ or fewer successes out of 10 trials with $\mathrm{p}=0.4\}$

$\underline{\text { Hypergeometric }} \operatorname{HYPGEOMDIST}(x, n, M, N)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}=\frac{C_{M, x} C_{N-M, n-x}}{C_{N, n}}$
x $\quad=$ successes in the sample
n = sample size
$\mathrm{M} \quad=$ successes in the population
$\mathrm{N} \quad=$ population size

Example

Five cards are drawn from a deck of 52 playing cards. This formula calculates the probability that two of the five cards are hearts:
$\operatorname{HYPGEOMDIST}(2,5,13,52)=0.27428$

$$
\underline{\text { Poisson }} \quad \operatorname{POISSON}(n, \lambda, c)=\frac{\mathrm{e}^{-\lambda} \lambda^{n}}{n!}
$$

n = number of events
$\lambda \quad=$ expected numeric value for the mean of the distribution
$c \quad=\left\{\begin{array}{l}0 \text { for probability of } n \text { events } \\ 1 \text { for cumulative probability of } 0 \text { to } n \text { events }\end{array}\right.$
Example
In a typical hour 30 customers arrive in a bank. What is the probability that 35 customers arrive?
$\operatorname{POISSON}(35,30,0)=0.045308$

Prof. Richard B. Goldstein - some continuous distributions using Excel

Chi-Square

$$
\operatorname{CHIDIST}(x, n)=\int_{0}^{\infty} \frac{1}{2^{n / 2} \Gamma(n / 2)} t^{n / 2-1} e^{-t / 2} d t
$$

x = independent variable
$\mathrm{n} \quad=$ number of degrees of freedom

$\operatorname{CHIDIST}(36.41503,24)=0.05$ (the value p$)$
$\operatorname{CHIINV}(\mathrm{p}, \mathrm{n})=\operatorname{CHIINV}(0.05,24)=36.41503$ (the value x$)$
Exponential $\operatorname{EXPONDIST}(\mathrm{x}, \lambda, \mathrm{c})=\lambda \mathrm{e}^{-\lambda \mathrm{x}}$ if $\mathrm{c}=0$ and cumulative probability if $\mathrm{C}=1$
x $\quad=$ independent variable
$\lambda \quad=$ parameter $=1 /$ mean

F

$$
\operatorname{FDIST}\left(X, N_{1}, N_{2}\right)=\frac{N_{1}^{N_{1} / 2} N_{2}^{N_{2} / 2}}{\beta\left(N_{1}, N_{2}\right)} \int_{0}^{x} t^{\left(N_{1}-2\right) / 2}\left(N_{2}+N_{1} t\right)^{-\left(N_{1}+N_{2}\right) / 2} d t
$$

X = independent variable
$\mathrm{N}_{1} \quad=$ numerator degrees of freedom
$\mathrm{N}_{2} \quad=$ denominator degrees of freedom
FDIST $(6.256057,5,4)=0.05$ (the value p)
$\operatorname{FINV}(0.05,5,4)=6.256057($ the value $x)$

Normal

$$
\operatorname{NORMDIST}(\mathrm{x}, \mu, \sigma, \mathrm{c})=\int_{-\infty}^{\mathrm{x}} \frac{\mathrm{e}^{-(\mathrm{t}-\mu)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma} \mathrm{dt}
$$

$x \quad=$ value at which to evaluate function
$\mu \quad=$ mean of the normal distribution
$\sigma \quad=$ standard deviation of the normal distribution
c $\quad=1$ to return the cumulative normal distribution function
0 (the default) to return the probability density function
$\operatorname{NORMDIST}(50,48,1.2,1)=0.95221$ (cumulative prob. p)
$\operatorname{NORMDIST}(50,48,1.2,0)=0.082898$ (density value)
$\operatorname{NORMINV}(\mathrm{p}, \mu, \sigma)=\operatorname{NORMINV}(0.95221,48,1.2)=50(\mathrm{x})$

Prof. Richard B. Goldstein - some continuous distributions using Excel

Student t

$$
\operatorname{TDIST}(\mathrm{x}, \mathrm{n}, \text { tails })=1-\frac{1}{\sqrt{\mathrm{n}} \beta\left(\frac{1}{2}, \frac{\mathrm{n}}{2}\right)} \int_{-\mathrm{x}}^{\mathrm{x}}\left(1+\frac{\mathrm{t}^{2}}{\mathrm{n}}\right)^{-\frac{\mathrm{n}+1}{2}} \mathrm{dt} \text { for } 2 \text { tails }
$$

$$
\begin{array}{ll}
\mathrm{x} & =\text { Value at which to evaluate the distribution. } \\
\mathrm{n} & =\text { Integer number of degrees of freedom } \\
\text { tails } \quad=1 \text { to return the area in a one-tailed distribution } \\
& 2 \text { to return the area in a two-tailed distribution }
\end{array}
$$

Other Distributions :

Beta
Gamma
Log-Normal
Weibull

BETADIST
GAMMADIST
LOGNORMDIST
WEIBULL

BETAINV
GAMMAINV
no inverse function
no inverse function

