POINT AND INTERVAL ESTIMATION - Prof. Richard B. Goldstein

$\theta \quad$ is an unknown population parameter
$\hat{\theta} \quad$ is a point estimator based upon the known sample data
[A, B] is a confidence interval estimate - A and B are based upon the sample

EXAMPLES

[1] μ is the population mean

$$
\text { various estimates include } \overline{\mathrm{x}}, \tilde{\mathrm{x}}, \frac{\mathrm{x}_{(1)}+\mathrm{x}_{(\mathrm{n})}}{2}=\frac{\mathrm{L}+\mathrm{H}}{2}
$$

[2] σ^{2} is the population variance
two estimates are $\mathrm{s}^{2}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-1}$ and $\mathrm{V}=\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}}$

DESIRABLE PROPERTIES

[1] Unbiased
[2] Consistency
Bias: $\quad B(\hat{\theta})=E(\hat{\theta})-\theta \quad$ unbiased means bias is zero s^{2} is an unbiased estimate of σ^{2} but s is not an unbiased estimate of σ. Use 1.028 s to estimate σ for $\mathrm{n}=10$ and 1.005 s for $\mathrm{n}=50$.
[3] Efficiency
If $\sigma_{\hat{\theta}_{1}}^{2}<\sigma_{\hat{\theta}_{2}}^{2}$, then $\hat{\theta}_{1}$ is a more efficient estimator than $\hat{\theta}_{2}$
[4] Sufficiency
It should use all of the sample data information.
[5] Resistance
A resistant estimator is one that is not influenced by the presence of outliers. For example, the median or mid-quartile resists the influence of outliers more than does the mean.
[6] Maximum Likelihood Estimate the probabilistically most likely estimate

Interval Estimation

Also known as confidence intervals: $\mathrm{P}(\theta \in[\mathrm{A}, \mathrm{B}])=1-\alpha$
Example:

$$
\mathrm{P}\left(\overline{\mathrm{x}}-\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}} \leq \mu \leq \overline{\mathrm{x}}+\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}\right)=1-\alpha
$$

MOST COMMON ESTIMATORS:

A. SINGLE SAMPLE

Mean $\overline{\mathrm{x}} \quad$ has a normal distribution for large n given as $\mathrm{N}\left(\mu, \frac{\sigma}{\sqrt{\mathrm{n}}}\right)$ and a Student-t distribution $T=\frac{\bar{x}-\mu}{s / \sqrt{n}}$ with $n-1$ d.f

Proportion $\hat{p}=\frac{\mathrm{r}}{\mathrm{n}}$ has a normal distribution $\mathrm{N}\left(\mathrm{p}, \sqrt{\frac{\mathrm{pq}}{\mathrm{n}}}\right) \quad *$
Variance $\quad s^{2} \quad$ has a Chi-square distribution $\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}$ with $n-1$ d.f.
B.

Means $\quad \overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2} \quad$ has a normal distribution for large n_{1} and n_{2} given as

$$
\begin{aligned}
& \mathrm{N}\left(\mu_{1}-\mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{2}}}\right) \\
& \text { for small samples } \mathrm{T}=\frac{\left(\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{\mathrm{n}_{1}}+\frac{s_{2}^{2}}{\mathrm{n}_{2}}}}
\end{aligned}
$$

with $\min \left(\mathrm{n}_{1}-1, \mathrm{n}_{2}-1\right)$ d.f. (assumes $\left.\sigma_{1} \neq \sigma_{2}\right) \quad * *$
Proportions $\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2} \quad$ has a normal distribution $\mathrm{N}\left(\mathrm{p}_{1}-\mathrm{p}_{2}, \sqrt{\frac{\hat{p}_{1} \hat{\mathrm{q}}_{1}}{\mathrm{n}_{1}}+\frac{\hat{\mathrm{p}}_{2} \hat{\mathrm{q}}_{2}}{\mathrm{n}_{2}}}\right)$
Variances $\frac{\mathrm{s}_{1}^{2}}{\mathrm{~s}_{2}^{2}} \quad$ has an F distribution with $\mathrm{n}_{1}-1$ d.f. in numerator and $\mathrm{n}_{2}-1$ d.f. in denominator

* A better estimate of \mathbf{p} is $\hat{\mathrm{p}}=\frac{\mathrm{r}+2}{\mathrm{n}+4}$ which brings the estimate closer to 0.5 and away from the extremes at 0 and 1.
$* * \quad$ If $s_{1} \approx s_{2}$ use $T=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$ where $s=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}$ with $n_{1}+n_{2}-2$ d.f.

Confidence Intervals

Mean $\boldsymbol{\mu} \quad \overline{\mathrm{x}} \pm \mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}=\overline{\mathrm{x}} \pm \mathrm{E} \quad$ for known σ
estimate sample size $\mathrm{n} \approx\left(\frac{\mathrm{z}_{\alpha / 2} \sigma}{\mathrm{E}}\right)^{2}$
$\overline{\mathrm{x}} \pm \mathrm{t}_{\alpha / 2, \mathrm{n}-1} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}} \quad$ for unknown σ
$\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2} \quad \overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2} \pm \mathrm{z}_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{\mathrm{n}_{1}}+\frac{\sigma_{2}^{2}}{\mathrm{n}_{2}}} \quad$ known σ_{1} and σ_{2}
$\overline{\mathrm{x}}_{1}-\overline{\mathrm{x}}_{2} \pm \mathrm{t}_{\alpha / 2, \mathrm{df}} \sqrt{\frac{\mathrm{s}_{1}^{2}}{\mathrm{n}_{1}}+\frac{\mathrm{s}_{2}^{2}}{\mathrm{n}_{2}}} \quad$ unknown σ_{1} and σ_{2} where $\mathrm{df}=\min \left(\mathrm{n}_{1}-1, \mathrm{n}_{2}-1\right)$
Proportion $\mathbf{p} \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$ is the standard Wald formula estimate sample size $\mathrm{n} \approx \hat{\mathrm{p}} \hat{\mathrm{q}}\left(\frac{\mathrm{z}_{\alpha / 2}}{\mathrm{E}}\right)^{2}$ note: if $\hat{\mathrm{p}}$ is unknown use $\mathrm{n} \approx 0.25\left(\frac{\mathrm{z}_{\alpha / 2}}{\mathrm{E}}\right)^{2}$

Replace \hat{p} by $\frac{r+2}{n+4}$ or $\frac{r+\frac{z^{2}}{2}}{n+z^{2}}$ for the adjusted Wald formula
$\mathbf{p}_{1}-\mathbf{p}_{2} \quad \hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2} \pm \mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}_{1} \hat{\mathrm{q}}_{1}}{\mathrm{n}_{1}}+\frac{\hat{\mathrm{p}}_{2} \hat{\mathrm{q}}_{2}}{\mathrm{n}_{2}}}$ can also be adjusted as above
Variance $\boldsymbol{\sigma}^{\mathbf{2}}\left[\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{\alpha / 2, \mathrm{n}-1}^{2}}, \frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\chi_{1-\alpha / 2, \mathrm{n}-1}^{2}}\right]$

$$
\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\left[\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{F_{\alpha / 2, n_{1}-1, n_{2}-1}}, \frac{s_{1}^{2}}{s_{2}^{2}} \mathrm{~F}_{\alpha / 2, \mathrm{n}_{2}-1, \mathrm{n}_{1}-1}\right]
$$

References: \quad The Advanced Theory of Statistics - Volume II by M.G. Kendall \&
A. Stuart (Hafner/Macmillan Publishing), Chapter 17, problem 17.6.

Mathematical Methods of Statistics - Harald Cramér (my thesis advisor's thesis advisor) (Princeton University Press)

Introduction to Statistical Analysis - Wilfrid Dixon \& Frank Massey, Jr. (McGraw Hill Publishing)

Probability and Statistics - Kevin J. Hastings (Addison-Wesley)
http://en.wikipedia.org/wiki/Estimator

