
POINT AND INTERVAL ESTIMATION – Prof. Richard B. Goldstein 
 

   is an unknown population parameter 

̂    is a point estimator based upon the known sample data 

[A, B]  is a confidence interval estimate – A and B are based upon the sample 

 
EXAMPLES 

 

 [1] μ is the population mean 

   various estimates include 
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[2] σ
2
 is the population variance 

  two estimates are 
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DESIRABLE PROPERTIES 

 

[1] Unbiased  Bias:      ˆEˆB  unbiased means bias is zero 

    s
2
 is an unbiased estimate of σ

2
 but s is not an unbiased estimate of σ. 

    Use 1.028s to estimate σ for n = 10 and 1.005s for n = 50. 

[2] Consistency  it becomes more likely that ̂ is close to θ as n becomes large 

 

[3] Efficiency  If 2
ˆ

2
ˆ

21 
 , then 1̂  is a more efficient estimator than 2̂   

 

[4] Sufficiency  It should use all of the sample data information. 

 

[5] Resistance  A resistant estimator is one that is not influenced by the presence of 

    outliers.  For example, the median or mid-quartile resists the influence 

    of outliers more than does the mean. 

 

[6] Maximum Likelihood Estimate the probabilistically most likely estimate 

 

 

Interval Estimation 

  

 Also known as confidence intervals:   1])B,A[(P  

 Example: 
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MOST COMMON ESTIMATORS: 

 

A. SINGLE SAMPLE 

 

Mean  x  has a normal distribution for large n given as 
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    and a Student-t distribution 
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  with n – 1 d.f 

 

Proportion 
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p̂   has a normal distribution 
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Variance s
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 has a Chi-square distribution 
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  with n – 1 d.f. 

 

B. TWO SAMPLES 

 

Means 21 xx   has a normal distribution for large n1 and n2  given as 
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     for small samples 
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     with min(n1 – 1, n2 – 1) d.f. (assumes σ1 ≠ σ2)   ** 
      

 Proportions 21 p̂p̂    has a normal distribution 
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 Variances 
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  has an F distribution with n1 – 1 d.f. in numerator and 

     n2 – 1 d.f. in denominator 

 

* A better estimate of p is 
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  which brings the estimate closer to 0.5 and away from 

the extremes at 0 and 1. 

 

** If s1 ≈ s2 use 
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Confidence Intervals 

 

Mean μ 
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estimate sample size
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   known σ1 and σ2 
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Proportion p 
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zp̂ 2/  is the standard Wald formula   

estimate sample size 
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   note: if p̂  is unknown use 
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  Replace 
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 for the adjusted Wald formula 

 

 p1-p2 
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zp̂p̂    can also be adjusted as above 

 

Variance σ
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