Hypothesis Testing

Null Hypothesis H₀ statement to be tested; examples $H_0: \mu = \mu_0, H_0: p_1 - p_2 = 0$

Alternative Hypothesis H_1 the statement that will be adopted if there is strong, significant evidence from the data to reject the null hypothesis; examples $H_1 : \mu > \mu_0$, $H_1 : p_1 - p_2 \neq 0$

	Our Decision				
Truth of H0We accept H0 as true		We reject H ₀ as false			
H ₀ is true	Correct decision with prob. $1 - \alpha$	Type I error with prob. α			
H ₀ is false	Type II error with prob. β	Correct decision with prob. 1 - β			

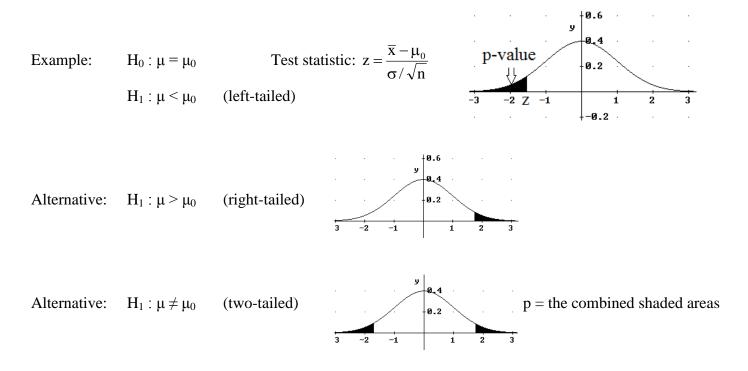
a is the level of significance; typically set in advance as 5% or 1%

1 - β is the power of a test and represents the probability of rejecting H₀, when it is, in fact, false

 $\mathbf{p} - \mathbf{value}$: given that H_0 is true this is the probability that the test statistic will take on values as extreme or more extreme than the observed value based upon the sample data

Steps

- [1] Determine the null hypothesis, H_0 , the alternative hypothesis, H_1 , and the level of significance, α
- [2] Select the test statistic for example z, t, χ^2 , F, etc.
- [3] Calculate the p-value based upon the sample and the test statistic used
- [4] Conclusion: If p-value $\leq \alpha$, we reject H₀ and if p-value $> \alpha$, we do not reject H₀
- [5] Interpretation of the test results



Prof. Richard B. Goldstein – Statistics

Normal or Student-t Distribution

accept

reject Chi-Square or F Distribution

\frown	
accept	reject
	α

_			α · · · ·	
Parameter	Test	Hypotheses	Test Statistic	Distribution
Mean	Known Variance	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	Normal
Mean	Unknown Variance	$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \text{ with } n - 1 \text{ d.f.}$	Student-t
Mean	$\begin{array}{l} Comparison - Paired \\ d_i = x_{1i} - x_{2i} \end{array}$		$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}} \text{ with } n - 1 \text{ d.f.}$	Student-t
Mean	Comparison – Independent Known variances	$H_0: \mu_1 - \mu_2 = \mu_d$ $H_1: \mu_1 - \mu_2 > \mu_d$	$z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \mu_d}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	Normal
Mean	Comparison – Independent Unknown and unequal Variances	$H_{0}: \mu_{1} - \mu_{2} = \mu_{d}$ $H_{1}: \mu_{1} - \mu_{2} > \mu_{d}$	$t = \frac{(\overline{x}_1 - \overline{x}_2) - \mu_d}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \text{ with } \min(n_1 - 1, n_2 - 1) \text{ d.f. *}$	Student-t
Mean	Comparison – Independent Unknown but assumed equal variances	$H_{0}: \mu_{1} - \mu_{2} = \mu_{d}$ $H_{1}: \mu_{1} - \mu_{2} > \mu_{d}$	$t = \frac{(\overline{x}_1 - \overline{x}_2) - \mu_d}{s\sqrt{(n_1)^{-1} + (n_2)^{-1}}} \text{ where } s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \text{ with } n_1 + n_2 - 2 \text{ df}$	Student-t
Proportion	Single	$H_0 : p = p_0$ $H_1 : p > p_0$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \text{ where } \hat{p} = \frac{r}{n}$	Normal
Proportion	Comparison	$H_0: p_1 = p_2$ $H_1: p_1 > p_2$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \text{ where } \hat{p} = \frac{r_1 + r_2}{n_1 + n_2}, \ \hat{p}_1 = \frac{r_1}{n_1}, \text{ and } \hat{p}_2 = \frac{r_2}{n_2}$	Normal
Variance	Single	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \text{ with } n-1 \text{ df}$	Chi-Square
Variance	Comparison	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	$F = \frac{s_1^2}{s_2^2}$ with num = n ₁ - 1 df and denom = n ₂ - 1 df	F

*

Use Welch-Satterthwaite's formula for more accuracy: $df \approx \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$