Prof. Richard B. Goldstein - Discrete and Continuous Probability Distributions

Discrete

Distribution	f(x)	mean	variance	practical uses
Binomial	$\binom{n}{x} p^{x} (1-p)^{n-x} x = 0, 1, 2,, n$	np	np(1-p)	x successes out of n trials
Geometric	$p(1-p)^{x-1}$ x = 1, 2, 3,	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	first success occurs on trial #x
Poisson	$\frac{e^{-\lambda}\lambda^{x}}{x!} x = 0, 1, 2, \dots$	λ	λ	x successes given λ were expected

Continuous

Distribution	f(x)	mean	variance	practical uses
Chi-Square	see below •	n	2n	goodness-of-fit tests single variance test
Exponential	$\lambda e^{-\lambda x}$ on $[0,\infty)$	$1/\lambda$	$1/\lambda^2$	queues, memory-less
F	see below •	$\frac{n_{_2}}{n_{_2}-2}$	complicated	hypothesis tests comparing two variances
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ on } (-\infty,\infty)$	μ	σ^2	standard bell-shaped distribution used on errors, test scores
Student-T	see below •	0	$\frac{n}{n-2} \text{ if } n > 2$	hypothesis tests comparing means
Uniform	$\frac{1}{b-a}$ on $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	random numbers on [0, 1]

• <u>probdist.pdf</u> contains more distributions and formulas