Math 523 - Prof. Richard B. Goldstein - Some Common Probability Examples

DICE

Two dice (36 in sample space)

sum	2	3	4	5	6	7	8	9	10	11	12
frequency	1	2	3	4	5	6	5	4	3	2	1

Three dice (216 in sample space)

sum	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
frequency	1	3	6	10	15^{*}	21	25	27	27	25	21	15	10	6	3	1

- 1-1-5 has 3 arrangements, 1-2-4 has $6,1-3-3$ has 3 , and 2-2-3 has 3

CARDS

Royal Flush	A K Q J 10 all the same suit	4
Straight Flush	Five cards in a sequence and of the same suit, but not a royal flush	36
Four of a kind	Four cards of the same denomination	624
Full house	Three of one denomination and a pair of a different denomination ${ }_{4} \mathrm{C}_{3} *{ }_{4} \mathrm{C}_{2} * 13 * 12=3744$	3744
Flush	Five cards of the same suit $\left({ }_{13} \mathrm{C}_{5}-10\right) * 4=5108$ (not in a sequence)	5108
Straight	Five cards in a sequence but not the same suit	10200
Three of a kind	Three cards of the same denomination	54912
Two pairs	Two pairs each with different denomination	123552
One pair	A single pair	1098240
Nothing	None of the above	$\frac{1302540}{2598960}$

LOTTERY

Suppose there are N numbers and n have to be chosen exactly.
Example: $\mathrm{N}=44 \mathrm{n}=6$
There are ${ }_{44} \mathrm{C}_{6}=7,059,052$ possible choices

${ }_{6} \mathrm{C}_{6} *{ }_{38} \mathrm{C}_{0}=1$	all 6	winning ticket
${ }_{6} \mathrm{C}_{5} *{ }_{38} \mathrm{C}_{1}=228$	5 of 6	second prizes
${ }_{6} \mathrm{C}_{4} *{ }_{38} \mathrm{C}_{2}=10,545$	4 of 6	third prizes
${ }_{6} \mathrm{C}_{3} *{ }_{38} \mathrm{C}_{3}=168,720$	3 of 6	
${ }_{6} \mathrm{C}_{2} *{ }_{38} \mathrm{C}_{4}=1,107,225$	2 of 6	
${ }_{6} \mathrm{C}_{1} *{ }_{38} \mathrm{C}_{5}=3,011,652$	1 of 6	
${ }_{6} \mathrm{C}_{0} *{ }_{38} \mathrm{C}_{6}=2,760,681$	0 of 6	

Power Ball
Extra number from 1 to M
${ }_{\mathrm{N}} \mathrm{C}_{\mathrm{n}} * \mathrm{M} \quad$ possible choices
Keno
There are 80 numbers and 20 are chosen. You can choose from 1 to 15 different numbers from 1 to 80 and the more you match the more $\$$ you win.

Example: you choose 8 numbers. The payoffs on \$ are as follows:

winning spots		\$1 pays
	$\$ 4.00$	
5		8.00
6		40.00
7		400.00
8		$10,000.00$

There are ${ }_{80} \mathrm{C}_{20}=3.535316142 \times 10^{18}$ possible ways of choosing all 20 numbers There are ${ }_{80} \mathrm{C}_{8}=28,987,537,150$ ways for you to choose 8 numbers

4 spots: $\quad{ }_{20} \mathrm{C}_{4} *{ }_{60} \mathrm{C}_{4}=2,362,591,585$ possibilities; prob. $=0.0815037$
5 spots: $\quad{ }_{20} \mathrm{C}_{5} *{ }_{60} \mathrm{C}_{3}=530,546,880$ possibilities; prob. $=0.0183026$
6 spots: $\quad{ }_{20} \mathrm{C}_{6} *{ }_{60} \mathrm{C}_{2}=\quad 68,605,200$ possibilities; prob. $=0.0023667$
7 spots: $\quad{ }_{20} \mathrm{C}_{7} *{ }_{60} \mathrm{C}_{1}=\quad 4,651,200$ possibilities; prob. $=0.0001605$
8 spots: $\quad{ }_{20} \mathrm{C}_{8} *{ }_{60} \mathrm{C}_{0}=\quad 125,970$ possibilities; prob. $=0.0000043$
The expected payoff is $\$ 0.6747$ or a profit of $-\$ 0.3253$

