THEOREMS OF PROBABILITY - Prof. Richard B. Goldstein

CHEBYCHEV'S THEOREM

At least $\left(1-\frac{1}{k^2}\right) \cdot 100$ percent of any set of data falls within k standard deviations of the mean.

$$\mathbf{P}(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

LAW OF LARGE NUMBERS / BERNOULLI'S THEOREM

If the number of times a situation is repeated becomes larger and larger, the proportion of successes will tend to come closer and closer to the actual probability of success.

For any $\varepsilon > 0$ $\lim_{n \to \infty} P\left\{ \left| \frac{x}{n} - p \right| < \varepsilon \right\} = 1$ where x = # of successes in n trials

More generally,

$$\lim_{n \to \infty} \Pr\left\{ \left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| < \varepsilon \right\} = 1$$

where $\{X_k\}$ are identical, mutually independent random variables with $\mu = E(X_k)$.

CENTRAL LIMIT THEOREM / DE MOIVRE & LAPLACE

The sum of n random numbers becomes more and more like a normal distribution.

Let {X_k} be a set of identical, mutually independent random variables Let $\mu = E(X_k)$ and $\sigma^2 = Var(X_k)$ for all k. Then,

$$P\left\{\frac{S-n\mu}{\sigma\sqrt{n}} < t\right\} = P\left\{\frac{\overline{x}-\mu}{\sigma/\sqrt{n}} < t\right\} \to \Phi(t)$$

where S = X₁ + X₂ + ... + X_n, and $\Phi(t)$ = cumulative standard normal distribution.

Note: The theorem has been extended to cases where the distributions are not identical and also when they are not independent.