THEOREMS OF PROBABILITY - Prof. Richard B. Goldstein

CHEBYCHEV'S THEOREM

At least $\left(1-\frac{1}{k^{2}}\right) \bullet 100$ percent of any set of data falls within k standard deviations of the mean.

$$
\mathrm{P}(\mu-k \sigma<X<\mu+k \sigma) \geq 1-\frac{1}{k^{2}}
$$

LAW OF LARGE NUMBERS / BERNOULLI'S THEOREM

If the number of times a situation is repeated becomes larger and larger, the proportion of successes will tend to come closer and closer to the actual probability of success.

For any $\varepsilon>0 \lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}\left\{\left|\frac{\mathrm{x}}{\mathrm{n}}-\mathrm{p}\right|<\varepsilon\right\}=1$ where $\mathrm{x}=$ \#of successes in n trials
More generally,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left\{\left|\frac{\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}}}{\mathrm{n}}-\mu\right|<\varepsilon\right\}=1
$$

where $\left\{X_{k}\right\}$ are identical, mutually independent random variables with $\mu=E\left(X_{k}\right)$.

CENTRAL LIMIT THEOREM / DE MOIVRE \& LAPLACE

The sum of n random numbers becomes more and more like a normal distribution.
Let $\left\{X_{k}\right\}$ be a set of identical, mutually independent random variables
Let $\mu=E\left(X_{k}\right)$ and $\sigma^{2}=\operatorname{Var}\left(X_{k}\right)$ for all k. Then,

$$
\mathrm{P}\left\{\frac{\mathrm{~S}-\mathrm{n} \mu}{\sigma \sqrt{\mathrm{n}}}<t\right\}=\mathrm{P}\left\{\frac{\overline{\mathrm{x}}-\mu}{\sigma / \sqrt{\mathrm{n}}}<t\right\} \rightarrow \Phi(t)
$$

where $S=X_{1}+X_{2}+\ldots+X_{n}$, and $\Phi(t)=$ cumulative standard normal distribution.
Note: The theorem has been extended to cases where the distributions are not identical and also when they are not independent.

